Convergence analysis of truncated incomplete Hessian Newton minimization method and application in biomolecular potential energy minimization
نویسندگان
چکیده
This paper gives a general convergence analysis to the truncated incomplete Hessian Newton method (T-IHN). It shows that T-IHN is globally convergent even with an indefinite incomplete Hessian matrix or an indefinite preconditioner, which may happen in practice. It also proves that when the T-IHN iterates are close enough to a minimum point, T-IHN has a Q-linear rate of convergence, and an admissible line search steplength of one. Moreover, a particular T-IHN algorithm is constructed for minimizing a biomolecular potential energy function, and numerically tested for a protein model problem based on a widely used molecular simulation package, CHARMM. Numerical results confirm the theoretical results, and demonstrate that T-IHN can have a better performance (in terms of computer CPU time) than most CHARMM minimizers.
منابع مشابه
An incomplete Hessian Newton minimization method and its application in a chemical database problem
To efficiently solve a large scale unconstrained minimization problem with a dense Hessian matrix, this paper proposes to use an incomplete Hessian matrix to define a new modified Newton method, called the incomplete Hessian Newton method (IHN). A theoretical analysis shows that IHN is convergent globally, and has a linear rate of convergence with a properly selected symmetric, positive definit...
متن کاملTruncated regularized Newton method for convex minimizations
Recently, Li et al. (Comput. Optim. Appl. 26:131–147, 2004) proposed a regularized Newton method for convex minimization problems. The method retains local quadratic convergence property without requirement of the singularity of the Hessian. In this paper, we develop a truncated regularized Newton method and show its global convergence. We also establish a local quadratic convergence theorem fo...
متن کاملProjection algorithms for nonconvex minimization with application to sparse principal component analysis
We consider concave minimization problems over nonconvex sets. Optimization problems with this structure arise in sparse principal component analysis. We analyze both a gradient projection algorithm and an approximate Newton algorithm where the Hessian approximation is a multiple of the identity. Convergence results are established. In numerical experiments arising in sparse principal component...
متن کاملAn Efficient Newton-like Method for Molecular Mechanics
Techniques from numerical analysis and crystallographic refinement have been combined to produce a variant of the Truncated Newton nonlinear optimization procedure. The new algorithm shows particular promise for potential energy minimization of large molecular systems. Usual implementations of Newton's method require storage space proportional to the number of atoms squared (i.e., O(N ')) and c...
متن کاملLarge Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
We consider large scale empirical risk minimization (ERM) problems, where both the problem dimension and variable size is large. In these cases, most second order methods are infeasible due to the high cost in both computing the Hessian over all samples and computing its inverse in high dimensions. In this paper, we propose a novel adaptive sample size second-order method, which reduces the cos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 48 شماره
صفحات -
تاریخ انتشار 2011